Files
ahash
aho_corasick
ansi_term
anyhow
atty
bech32
bincode
bit_set
bit_vec
bitcoin
bitcoin_hashes
bitflags
cfg_if
clap
convert_case
core2
crunchy
cryptoxide
enum_primitive
fancy_regex
hashbrown
hex
hex_literal
itoa
libc
libloading
memchr
num
num_bigint
num_complex
num_integer
num_iter
num_rational
num_traits
ordered_float
paste
proc_macro2
proc_macro_error
proc_macro_error_attr
qimalloc
quote
regex
regex_syntax
remain
rust_ssvm
ryu
secp256k1
secp256k1_sys
serde
serde_derive
serde_json
serde_value
sewup
sewup_derive
ss_ewasm_api
ssvm_evmc_client
ssvm_evmc_sys
strsim
syn
textwrap
thiserror
thiserror_impl
tiny_keccak
toml
unicode_width
unicode_xid
vec_map
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
//! This module implements the PBKDF2 Key Derivation Function as specified in [Specification][1].
//!
//! # Examples
//!
//! ```
//! use cryptoxide::{pbkdf2::pbkdf2, hmac::Hmac, sha2::Sha256};
//!
//! let password = b"password";
//! let salt = b"salt";
//! let c = 2;
//! let mut out = [0u8; 64];
//! pbkdf2(&mut Hmac::new(Sha256::new(), password), salt, c, &mut out);
//! ```
//!
//! [1]: <https://tools.ietf.org/html/rfc2898>

// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

use crate::cryptoutil::{copy_memory, write_u32_be};
use crate::mac::Mac;
use alloc::vec::Vec;
use core::iter::repeat;

// Calculate a block of the output of size equal to the output_bytes of the underlying Mac function
// `mac` - The Mac function to use
// `salt` - the salt value to use
// `c` - the iteration count
// `idx` - the 1 based index of the block
// `scratch` - a temporary variable the same length as the block
// `block` - the block of the output to calculate
fn calculate_block<M: Mac>(
    mac: &mut M,
    salt: &[u8],
    c: u32,
    idx: u32,
    scratch: &mut [u8],
    block: &mut [u8],
) {
    // Perform the 1st iteration. The output goes directly into block
    mac.input(salt);
    let mut idx_buf = [0u8; 4];
    write_u32_be(&mut idx_buf, idx);
    mac.input(&idx_buf);
    mac.raw_result(block);
    mac.reset();

    // Perform the 2nd iteration. The input comes from block and is output into scratch. scratch is
    // then exclusive-or added into block. After all this, the input to the next step is now in
    // scratch and block is left to just accumulate the exclusive-of sum of remaining iterations.
    if c > 1 {
        mac.input(block);
        mac.raw_result(scratch);
        mac.reset();
        for (output, &input) in block.iter_mut().zip(scratch.iter()) {
            *output ^= input;
        }
    }

    // Perform all remaining iterations
    for _ in 2..c {
        mac.input(scratch);
        mac.raw_result(scratch);
        mac.reset();
        for (output, &input) in block.iter_mut().zip(scratch.iter()) {
            *output ^= input;
        }
    }
}

/**
 * Execute the PBKDF2 Key Derivation Function. The Scrypt Key Derivation Function generally provides
 * better security, so, applications that do not have a requirement to use PBKDF2 specifically
 * should consider using that function instead.
 *
 * # Arguments
 * * `mac` - The Pseudo Random Function to use.
 * * `salt` - The salt value to use.
 * * `c` - The iteration count. Users should carefully determine this value as it is the primary
 *       factor in determining the security of the derived key.
 * * `output` - The output buffer to fill with the derived key value.
 *
 */
pub fn pbkdf2<M: Mac>(mac: &mut M, salt: &[u8], c: u32, output: &mut [u8]) {
    assert!(c > 0);

    let os = mac.output_bytes();

    // A temporary storage array needed by calculate_block. This is really only necessary if c > 1.
    // Most users of pbkdf2 should use a value much larger than 1, so, this allocation should almost
    // always be necessary. A big exception is Scrypt. However, this allocation is unlikely to be
    // the bottleneck in Scrypt performance.
    let mut scratch: Vec<u8> = repeat(0).take(os).collect();

    let mut idx: u32 = 0;

    for chunk in output.chunks_mut(os) {
        // The block index starts at 1. So, this is supposed to run on the first execution.
        idx = idx.checked_add(1).expect("PBKDF2 size limit exceeded.");

        if chunk.len() == os {
            calculate_block(mac, salt, c, idx, &mut scratch, chunk);
        } else {
            let mut tmp: Vec<u8> = repeat(0).take(os).collect();
            calculate_block(mac, salt, c, idx, &mut scratch[..], &mut tmp[..]);
            let chunk_len = chunk.len();
            copy_memory(&tmp[..chunk_len], chunk);
        }
    }
}

#[cfg(test)]
mod test {
    use super::pbkdf2;
    use crate::hmac::Hmac;
    use crate::sha1::Sha1;

    #[test]
    fn test1() {
        let password = b"password";
        let salt = b"salt";
        let c = 2;
        let mut out = [0u8; 20];
        pbkdf2(&mut Hmac::new(Sha1::new(), password), salt, c, &mut out);
        assert_eq!(
            out,
            [
                0xea, 0x6c, 0x01, 0x4d, 0xc7, 0x2d, 0x6f, 0x8c, 0xcd, 0x1e, 0xd9, 0x2a, 0xce, 0x1d,
                0x41, 0xf0, 0xd8, 0xde, 0x89, 0x57
            ]
        )
    }
}