Files
ahash
aho_corasick
ansi_term
anyhow
atty
bech32
bincode
bit_set
bit_vec
bitcoin
bitcoin_hashes
bitflags
cfg_if
clap
convert_case
core2
crunchy
cryptoxide
enum_primitive
fancy_regex
hashbrown
hex
hex_literal
itoa
libc
libloading
memchr
num
num_bigint
num_complex
num_integer
num_iter
num_rational
num_traits
ordered_float
paste
proc_macro2
proc_macro_error
proc_macro_error_attr
qimalloc
quote
regex
regex_syntax
remain
rust_ssvm
ryu
secp256k1
secp256k1_sys
serde
serde_derive
serde_json
serde_value
sewup
sewup_derive
ss_ewasm_api
ssvm_evmc_client
ssvm_evmc_sys
strsim
syn
textwrap
thiserror
thiserror_impl
tiny_keccak
toml
unicode_width
unicode_xid
vec_map
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
// Bitcoin secp256k1 bindings
// Written in 2015 by
//   Andrew Poelstra
//
// To the extent possible under law, the author(s) have dedicated all
// copyright and related and neighboring rights to this software to
// the public domain worldwide. This software is distributed without
// any warranty.
//
// You should have received a copy of the CC0 Public Domain Dedication
// along with this software.
// If not, see <http://creativecommons.org/publicdomain/zero/1.0/>.
//

//! # ECDH
//! Support for shared secret computations
//!

use core::ptr;
use core::ops::{FnMut, Deref};

use key::{SecretKey, PublicKey};
use ffi::{self, CPtr};
use secp256k1_sys::types::{c_int, c_uchar, c_void};

/// A tag used for recovering the public key from a compact signature
#[derive(Copy, Clone)]
pub struct SharedSecret {
    data: [u8; 256],
    len: usize,
}
impl_raw_debug!(SharedSecret);


// This implementes `From<N>` for all `[u8; N]` arrays from 128bits(16 byte) to 2048bits allowing known hash lengths.
// Lower than 128 bits isn't resistant to collisions any more.
impl_from_array_len!(SharedSecret, 256, (16 20 28 32 48 64 96 128 256));

impl SharedSecret {

    /// Create an empty SharedSecret
    pub(crate) fn empty() ->  SharedSecret {
        SharedSecret {
            data: [0u8; 256],
            len: 0,
        }
    }

    /// Get a pointer to the underlying data with the specified capacity.
    pub(crate) fn get_data_mut_ptr(&mut self) -> *mut u8 {
        self.data.as_mut_ptr()
    }

    /// Get the capacity of the underlying data buffer.
    pub fn capacity(&self) -> usize {
        self.data.len()
    }

    /// Get the len of the used data.
    pub fn len(&self) -> usize {
        self.len
    }

    /// True if the underlying data buffer is empty.
    pub fn is_empty(&self) -> bool {
        self.data.is_empty()
    }

    /// Set the length of the object.
    pub(crate) fn set_len(&mut self, len: usize) {
        debug_assert!(len <= self.data.len());
        self.len = len;
    }
}

impl PartialEq for SharedSecret {
    fn eq(&self, other: &SharedSecret) -> bool {
        self.as_ref() == other.as_ref()
    }
}

impl AsRef<[u8]> for SharedSecret {
    fn as_ref(&self) -> &[u8] {
        &self.data[..self.len]
    }
}

impl Deref for SharedSecret {
    type Target = [u8];
    fn deref(&self) -> &[u8] {
        &self.data[..self.len]
    }
}


unsafe extern "C" fn c_callback(output: *mut c_uchar, x: *const c_uchar, y: *const c_uchar, _data: *mut c_void) -> c_int {
    ptr::copy_nonoverlapping(x, output, 32);
    ptr::copy_nonoverlapping(y, output.offset(32), 32);
    1
}

impl SharedSecret {
    /// Creates a new shared secret from a pubkey and secret key
    #[inline]
    pub fn new(point: &PublicKey, scalar: &SecretKey) -> SharedSecret {
        let mut ss = SharedSecret::empty();
        let res = unsafe {
             ffi::secp256k1_ecdh(
                ffi::secp256k1_context_no_precomp,
                ss.get_data_mut_ptr(),
                point.as_c_ptr(),
                scalar.as_c_ptr(),
                ffi::secp256k1_ecdh_hash_function_default,
                ptr::null_mut(),
            )
        };
        // The default `secp256k1_ecdh_hash_function_default` should always return 1.
        // and the scalar was verified to be valid(0 > scalar > group_order) via the type system
        debug_assert_eq!(res, 1);
        ss.set_len(32); // The default hash function is SHA256, which is 32 bytes long.
        ss
    }


    /// Creates a new shared secret from a pubkey and secret key with applied custom hash function
    /// The custom hash function must be in the form of `fn(x: [u8;32], y: [u8;32]) -> SharedSecret`
    /// `SharedSecret` can be easily created via the `From` impl from arrays.
    /// # Examples
    /// ```
    /// # use secp256k1::ecdh::SharedSecret;
    /// # use secp256k1::{Secp256k1, PublicKey, SecretKey};
    /// # fn sha2(_a: &[u8], _b: &[u8]) -> [u8; 32] {[0u8; 32]}
    /// # let secp = Secp256k1::signing_only();
    /// # let secret_key = SecretKey::from_slice(&[3u8; 32]).unwrap();
    /// # let secret_key2 = SecretKey::from_slice(&[7u8; 32]).unwrap();
    /// # let public_key = PublicKey::from_secret_key(&secp, &secret_key2);
    ///
    /// let secret = SharedSecret::new_with_hash(&public_key, &secret_key, |x,y| {
    ///     let hash: [u8; 32] = sha2(&x,&y);
    ///     hash.into()
    /// });
    ///
    /// ```
    pub fn new_with_hash<F>(point: &PublicKey, scalar: &SecretKey, mut hash_function: F) -> SharedSecret
        where F: FnMut([u8; 32], [u8; 32]) -> SharedSecret {
        let mut xy = [0u8; 64];

        let res = unsafe {
            ffi::secp256k1_ecdh(
                ffi::secp256k1_context_no_precomp,
                xy.as_mut_ptr(),
                point.as_ptr(),
                scalar.as_ptr(),
                Some(c_callback),
                ptr::null_mut(),
            )
        };
        // Our callback *always* returns 1.
        // and the scalar was verified to be valid(0 > scalar > group_order) via the type system
        debug_assert_eq!(res, 1);

        let mut x = [0u8; 32];
        let mut y = [0u8; 32];
        x.copy_from_slice(&xy[..32]);
        y.copy_from_slice(&xy[32..]);
        hash_function(x, y)
    }
}

#[cfg(test)]
mod tests {
    use rand::thread_rng;
    use super::SharedSecret;
    use super::super::Secp256k1;

    #[cfg(target_arch = "wasm32")]
    use wasm_bindgen_test::wasm_bindgen_test as test;

    #[test]
    fn ecdh() {
        let s = Secp256k1::signing_only();
        let (sk1, pk1) = s.generate_keypair(&mut thread_rng());
        let (sk2, pk2) = s.generate_keypair(&mut thread_rng());

        let sec1 = SharedSecret::new(&pk1, &sk2);
        let sec2 = SharedSecret::new(&pk2, &sk1);
        let sec_odd = SharedSecret::new(&pk1, &sk1);
        assert_eq!(sec1, sec2);
        assert!(sec_odd != sec2);
    }

    #[test]
    fn ecdh_with_hash() {
        let s = Secp256k1::signing_only();
        let (sk1, pk1) = s.generate_keypair(&mut thread_rng());
        let (sk2, pk2) = s.generate_keypair(&mut thread_rng());

        let sec1 = SharedSecret::new_with_hash(&pk1, &sk2, |x,_| x.into());
        let sec2 = SharedSecret::new_with_hash(&pk2, &sk1, |x,_| x.into());
        let sec_odd = SharedSecret::new_with_hash(&pk1, &sk1, |x,_| x.into());
        assert_eq!(sec1, sec2);
        assert_ne!(sec_odd, sec2);
    }

    #[test]
    fn ecdh_with_hash_callback() {
        let s = Secp256k1::signing_only();
        let (sk1, pk1) = s.generate_keypair(&mut thread_rng());
        let expect_result: [u8; 64] = [123; 64];
        let mut x_out = [0u8; 32];
        let mut y_out = [0u8; 32];
        let result = SharedSecret::new_with_hash(&pk1, &sk1, |x, y| {
            x_out = x;
            y_out = y;
            expect_result.into()
        });
        assert_eq!(&expect_result[..], &result[..]);
        assert_ne!(x_out, [0u8; 32]);
        assert_ne!(y_out, [0u8; 32]);
    }

    #[test]
    fn test_c_callback() {
        let x = [5u8; 32];
        let y = [7u8; 32];
        let mut output = [0u8; 64];
        let res = unsafe { super::c_callback(output.as_mut_ptr(), x.as_ptr(), y.as_ptr(), ::ptr::null_mut()) };
        assert_eq!(res, 1);
        let mut new_x = [0u8; 32];
        let mut new_y = [0u8; 32];
        new_x.copy_from_slice(&output[..32]);
        new_y.copy_from_slice(&output[32..]);
        assert_eq!(x, new_x);
        assert_eq!(y, new_y);
    }
}

#[cfg(all(test, feature = "unstable"))]
mod benches {
    use rand::thread_rng;
    use test::{Bencher, black_box};

    use super::SharedSecret;
    use super::super::Secp256k1;

    #[bench]
    pub fn bench_ecdh(bh: &mut Bencher) {
        let s = Secp256k1::signing_only();
        let (sk, pk) = s.generate_keypair(&mut thread_rng());

        bh.iter( || {
            let res = SharedSecret::new(&pk, &sk);
            black_box(res);
        });
    }
}