Files
ahash
aho_corasick
ansi_term
anyhow
atty
bech32
bincode
bit_set
bit_vec
bitcoin
bitcoin_hashes
bitflags
cfg_if
clap
convert_case
core2
crunchy
cryptoxide
enum_primitive
fancy_regex
hashbrown
hex
hex_literal
itoa
libc
libloading
memchr
num
num_bigint
num_complex
num_integer
num_iter
num_rational
num_traits
ordered_float
paste
proc_macro2
proc_macro_error
proc_macro_error_attr
qimalloc
quote
regex
regex_syntax
remain
rust_ssvm
ryu
secp256k1
secp256k1_sys
serde
serde_derive
serde_json
serde_value
sewup
sewup_derive
ss_ewasm_api
ssvm_evmc_client
ssvm_evmc_sys
strsim
syn
textwrap
thiserror
thiserror_impl
tiny_keccak
toml
unicode_width
unicode_xid
vec_map
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
//! # aHash
//!
//! This hashing algorithm is intended to be a high performance, (hardware specific), keyed hash function.
//! This can be seen as a DOS resistant alternative to `FxHash`, or a fast equivalent to `SipHash`.
//! It provides a high speed hash algorithm, but where the result is not predictable without knowing a Key.
//! This allows it to be used in a `HashMap` without allowing for the possibility that an malicious user can
//! induce a collision.
//!
//! # How aHash works
//!
//! aHash uses the hardware AES instruction on x86 processors to provide a keyed hash function.
//! It uses two rounds of AES per hash. So it should not be considered cryptographically secure.
#![deny(clippy::correctness, clippy::complexity, clippy::perf)]
#![allow(clippy::pedantic, clippy::cast_lossless, clippy::unreadable_literal)]
#![cfg_attr(all(not(test), not(feature = "std")), no_std)]

#[macro_use]
mod convert;

#[cfg(all(any(target_arch = "x86", target_arch = "x86_64"), target_feature = "aes", not(miri)))]
mod aes_hash;
mod fallback_hash;
#[cfg(test)]
mod hash_quality_test;

mod folded_multiply;
#[cfg(feature = "std")]
mod hash_map;
#[cfg(feature = "std")]
mod hash_set;
mod random_state;

#[cfg(feature = "compile-time-rng")]
use const_random::const_random;

#[cfg(all(any(target_arch = "x86", target_arch = "x86_64"), target_feature = "aes", not(miri)))]
pub use crate::aes_hash::AHasher;

#[cfg(not(all(any(target_arch = "x86", target_arch = "x86_64"), target_feature = "aes", not(miri))))]
pub use crate::fallback_hash::AHasher;
pub use crate::random_state::RandomState;

#[cfg(feature = "std")]
pub use crate::hash_map::AHashMap;
#[cfg(feature = "std")]
pub use crate::hash_set::AHashSet;

/// Provides a default [Hasher] compile time generated constants for keys.
/// This is typically used in conjunction with [`BuildHasherDefault`] to create
/// [AHasher]s in order to hash the keys of the map.
///
/// # Example
/// ```
/// use std::hash::BuildHasherDefault;
/// use ahash::{AHasher, RandomState};
/// use std::collections::HashMap;
///
/// let mut map: HashMap<i32, i32, RandomState> = HashMap::default();
/// map.insert(12, 34);
/// ```
///
/// [BuildHasherDefault]: std::hash::BuildHasherDefault
/// [Hasher]: std::hash::Hasher
/// [HashMap]: std::collections::HashMap
#[cfg(feature = "compile-time-rng")]
impl Default for AHasher {
    /// Constructs a new [AHasher] with compile time generated constants for keys.
    /// This means the keys will be the same from one instance to another,
    /// but different from build to the next. So if it is possible for a potential
    /// attacker to have access to the compiled binary it would be better
    /// to specify keys generated at runtime.
    ///
    /// This is defined only if the `compile-time-rng` feature is enabled.
    ///
    /// # Examples
    ///
    /// ```
    /// use ahash::AHasher;
    /// use std::hash::Hasher;
    ///
    /// let mut hasher_1 = AHasher::default();
    /// let mut hasher_2 = AHasher::default();
    ///
    /// hasher_1.write_u32(1234);
    /// hasher_2.write_u32(1234);
    ///
    /// assert_eq!(hasher_1.finish(), hasher_2.finish());
    /// ```
    #[inline]
    fn default() -> AHasher {
        AHasher::new_with_keys(const_random!(u64), const_random!(u64))
    }
}

//#[inline(never)]
//pub fn hash_test(input: &[u8]) -> u64 {
//    use std::hash::Hasher;
//    let mut a = AHasher::new_with_keys(67, 87);
//    a.write(input);
//    a.finish()
//}

#[cfg(test)]
mod test {
    use crate::convert::Convert;
    use crate::*;
    use core::hash::BuildHasherDefault;
    use std::collections::HashMap;

    #[test]
    fn test_default_builder() {
        let mut map = HashMap::<u32, u64, BuildHasherDefault<AHasher>>::default();
        map.insert(1, 3);
    }
    #[test]
    fn test_builder() {
        let mut map = HashMap::<u32, u64, RandomState>::default();
        map.insert(1, 3);
    }

    #[test]
    fn test_conversion() {
        let input: &[u8] = b"dddddddd";
        let bytes: u64 = as_array!(input, 8).convert();
        assert_eq!(bytes, 0x6464646464646464);
    }

    #[test]
    fn test_ahasher_construction() {
        let _ = AHasher::new_with_keys(1245, 5678);
    }
}