1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
// Copyright (c) 2017 Clark Moody
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.

//! Encoding and decoding of the Bech32 format
//!
//! Bech32 is an encoding scheme that is easy to use for humans and efficient to encode in QR codes.
//!
//! A Bech32 string consists of a human-readable part (HRP), a separator (the character `'1'`), and
//! a data part. A checksum at the end of the string provides error detection to prevent mistakes
//! when the string is written off or read out loud.
//!
//! The original description in [BIP-0173](https://github.com/bitcoin/bips/blob/master/bip-0173.mediawiki)
//! has more details.
//!
#![cfg_attr(
    feature = "std",
    doc = "
# Examples
```
use bech32::{self, FromBase32, ToBase32, Variant};
let encoded = bech32::encode(\"bech32\", vec![0x00, 0x01, 0x02].to_base32(), Variant::Bech32).unwrap();
assert_eq!(encoded, \"bech321qqqsyrhqy2a\".to_string());
let (hrp, data, variant) = bech32::decode(&encoded).unwrap();
assert_eq!(hrp, \"bech32\");
assert_eq!(Vec::<u8>::from_base32(&data).unwrap(), vec![0x00, 0x01, 0x02]);
assert_eq!(variant, Variant::Bech32);
```
"
)]
//!

// Allow trait objects without dyn on nightly and make 1.22 ignore the unknown lint
#![allow(unknown_lints)]
#![allow(bare_trait_objects)]
#![deny(missing_docs)]
#![deny(non_upper_case_globals)]
#![deny(non_camel_case_types)]
#![deny(non_snake_case)]
#![deny(unused_mut)]
#![cfg_attr(feature = "strict", deny(warnings))]
#![cfg_attr(all(not(feature = "std"), not(test)), no_std)]

#[cfg(all(not(feature = "std"), not(test)))]
extern crate alloc;

#[cfg(any(test, feature = "std"))]
extern crate core;

#[cfg(all(not(feature = "std"), not(test)))]
use alloc::{string::String, vec::Vec};

#[cfg(all(not(feature = "std"), not(test)))]
use alloc::borrow::Cow;
#[cfg(any(feature = "std", test))]
use std::borrow::Cow;

use core::{fmt, mem};

/// Integer in the range `0..32`
#[derive(PartialEq, Eq, Debug, Copy, Clone, Default, PartialOrd, Ord, Hash)]
#[allow(non_camel_case_types)]
pub struct u5(u8);

impl u5 {
    /// Convert a `u8` to `u5` if in range, return `Error` otherwise
    pub fn try_from_u8(value: u8) -> Result<u5, Error> {
        if value > 31 {
            Err(Error::InvalidData(value))
        } else {
            Ok(u5(value))
        }
    }

    /// Returns a copy of the underlying `u8` value
    pub fn to_u8(self) -> u8 {
        self.0
    }

    /// Get char representing this 5 bit value as defined in BIP173
    pub fn to_char(self) -> char {
        CHARSET[self.to_u8() as usize]
    }
}

impl Into<u8> for u5 {
    fn into(self) -> u8 {
        self.0
    }
}

impl AsRef<u8> for u5 {
    fn as_ref(&self) -> &u8 {
        &self.0
    }
}

/// Interface to write `u5`s into a sink
pub trait WriteBase32 {
    /// Write error
    type Err: fmt::Debug;

    /// Write a `u5` slice
    fn write(&mut self, data: &[u5]) -> Result<(), Self::Err> {
        for b in data {
            self.write_u5(*b)?;
        }
        Ok(())
    }

    /// Write a single `u5`
    fn write_u5(&mut self, data: u5) -> Result<(), Self::Err>;
}

/// Allocationless Bech32 writer that accumulates the checksum data internally and writes them out
/// in the end.
pub struct Bech32Writer<'a> {
    formatter: &'a mut fmt::Write,
    chk: u32,
    variant: Variant,
}

impl<'a> Bech32Writer<'a> {
    /// Creates a new writer that can write a bech32 string without allocating itself.
    ///
    /// This is a rather low-level API and doesn't check the HRP or data length for standard
    /// compliance.
    pub fn new(
        hrp: &str,
        variant: Variant,
        fmt: &'a mut fmt::Write,
    ) -> Result<Bech32Writer<'a>, fmt::Error> {
        let mut writer = Bech32Writer {
            formatter: fmt,
            chk: 1,
            variant,
        };

        writer.formatter.write_str(hrp)?;
        writer.formatter.write_char(SEP)?;

        // expand HRP
        for b in hrp.bytes() {
            writer.polymod_step(u5(b >> 5));
        }
        writer.polymod_step(u5(0));
        for b in hrp.bytes() {
            writer.polymod_step(u5(b & 0x1f));
        }

        Ok(writer)
    }

    fn polymod_step(&mut self, v: u5) {
        let b = (self.chk >> 25) as u8;
        self.chk = (self.chk & 0x01ff_ffff) << 5 ^ (u32::from(*v.as_ref()));

        for (i, item) in GEN.iter().enumerate() {
            if (b >> i) & 1 == 1 {
                self.chk ^= item;
            }
        }
    }

    /// Write out the checksum at the end. If this method isn't called this will happen on drop.
    pub fn finalize(mut self) -> fmt::Result {
        self.inner_finalize()?;
        mem::forget(self);
        Ok(())
    }

    fn inner_finalize(&mut self) -> fmt::Result {
        // Pad with 6 zeros
        for _ in 0..6 {
            self.polymod_step(u5(0))
        }

        let plm: u32 = self.chk ^ self.variant.constant();

        for p in 0..6 {
            self.formatter
                .write_char(u5(((plm >> (5 * (5 - p))) & 0x1f) as u8).to_char())?;
        }

        Ok(())
    }
}
impl<'a> WriteBase32 for Bech32Writer<'a> {
    type Err = fmt::Error;

    /// Writes a single 5 bit value of the data part
    fn write_u5(&mut self, data: u5) -> fmt::Result {
        self.polymod_step(data);
        self.formatter.write_char(data.to_char())
    }
}

impl<'a> Drop for Bech32Writer<'a> {
    fn drop(&mut self) {
        self.inner_finalize()
            .expect("Unhandled error writing the checksum on drop.")
    }
}

/// Parse/convert base32 slice to `Self`. It is the reciprocal of
/// `ToBase32`.
pub trait FromBase32: Sized {
    /// The associated error which can be returned from parsing (e.g. because of bad padding).
    type Err;

    /// Convert a base32 slice to `Self`.
    fn from_base32(b32: &[u5]) -> Result<Self, Self::Err>;
}

impl WriteBase32 for Vec<u5> {
    type Err = ();

    fn write(&mut self, data: &[u5]) -> Result<(), Self::Err> {
        self.extend_from_slice(data);
        Ok(())
    }

    fn write_u5(&mut self, data: u5) -> Result<(), Self::Err> {
        self.push(data);
        Ok(())
    }
}

impl FromBase32 for Vec<u8> {
    type Err = Error;

    /// Convert base32 to base256, removes null-padding if present, returns
    /// `Err(Error::InvalidPadding)` if padding bits are unequal `0`
    fn from_base32(b32: &[u5]) -> Result<Self, Self::Err> {
        convert_bits(b32, 5, 8, false)
    }
}

/// A trait for converting a value to a type `T` that represents a `u5` slice.
pub trait ToBase32 {
    /// Convert `Self` to base32 vector
    fn to_base32(&self) -> Vec<u5> {
        let mut vec = Vec::new();
        self.write_base32(&mut vec).unwrap();
        vec
    }

    /// Encode as base32 and write it to the supplied writer
    /// Implementations shouldn't allocate.
    fn write_base32<W: WriteBase32>(&self, writer: &mut W) -> Result<(), <W as WriteBase32>::Err>;
}

/// Interface to calculate the length of the base32 representation before actually serializing
pub trait Base32Len: ToBase32 {
    /// Calculate the base32 serialized length
    fn base32_len(&self) -> usize;
}

impl<T: AsRef<[u8]>> ToBase32 for T {
    fn write_base32<W: WriteBase32>(&self, writer: &mut W) -> Result<(), <W as WriteBase32>::Err> {
        // Amount of bits left over from last round, stored in buffer.
        let mut buffer_bits = 0u32;
        // Holds all unwritten bits left over from last round. The bits are stored beginning from
        // the most significant bit. E.g. if buffer_bits=3, then the byte with bits a, b and c will
        // look as follows: [a, b, c, 0, 0, 0, 0, 0]
        let mut buffer: u8 = 0;

        for &b in self.as_ref() {
            // Write first u5 if we have to write two u5s this round. That only happens if the
            // buffer holds too many bits, so we don't have to combine buffer bits with new bits
            // from this rounds byte.
            if buffer_bits >= 5 {
                writer.write_u5(u5((buffer & 0b1111_1000) >> 3))?;
                buffer <<= 5;
                buffer_bits -= 5;
            }

            // Combine all bits from buffer with enough bits from this rounds byte so that they fill
            // a u5. Save reamining bits from byte to buffer.
            let from_buffer = buffer >> 3;
            let from_byte = b >> (3 + buffer_bits); // buffer_bits <= 4

            writer.write_u5(u5(from_buffer | from_byte))?;
            buffer = b << (5 - buffer_bits);
            buffer_bits += 3;
        }

        // There can be at most two u5s left in the buffer after processing all bytes, write them.
        if buffer_bits >= 5 {
            writer.write_u5(u5((buffer & 0b1111_1000) >> 3))?;
            buffer <<= 5;
            buffer_bits -= 5;
        }

        if buffer_bits != 0 {
            writer.write_u5(u5(buffer >> 3))?;
        }

        Ok(())
    }
}

impl<T: AsRef<[u8]>> Base32Len for T {
    fn base32_len(&self) -> usize {
        let bits = self.as_ref().len() * 8;
        if bits % 5 == 0 {
            bits / 5
        } else {
            bits / 5 + 1
        }
    }
}

/// A trait to convert between u8 arrays and u5 arrays without changing the content of the elements,
/// but checking that they are in range.
pub trait CheckBase32<T: AsRef<[u5]>> {
    /// Error type if conversion fails
    type Err;

    /// Check if all values are in range and return array-like struct of `u5` values
    fn check_base32(self) -> Result<T, Self::Err>;
}

impl<'f, T: AsRef<[u8]>> CheckBase32<Vec<u5>> for T {
    type Err = Error;

    fn check_base32(self) -> Result<Vec<u5>, Self::Err> {
        self.as_ref()
            .iter()
            .map(|x| u5::try_from_u8(*x))
            .collect::<Result<Vec<u5>, Error>>()
    }
}

#[derive(Clone, Copy, PartialEq, Eq)]
enum Case {
    Upper,
    Lower,
    None,
}

/// Check if the HRP is valid. Returns the case of the HRP, if any.
///
/// # Errors
/// * **MixedCase**: If the HRP contains both uppercase and lowercase characters.
/// * **InvalidChar**: If the HRP contains any non-ASCII characters (outside 33..=126).
/// * **InvalidLength**: If the HRP is outside 1..83 characters long.
fn check_hrp(hrp: &str) -> Result<Case, Error> {
    if hrp.is_empty() || hrp.len() > 83 {
        return Err(Error::InvalidLength);
    }

    let mut has_lower: bool = false;
    let mut has_upper: bool = false;
    for b in hrp.bytes() {
        // Valid subset of ASCII
        if b < 33 || b > 126 {
            return Err(Error::InvalidChar(b as char));
        }

        if b >= b'a' && b <= b'z' {
            has_lower = true;
        } else if b >= b'A' && b <= b'Z' {
            has_upper = true;
        };

        if has_lower && has_upper {
            return Err(Error::MixedCase);
        }
    }

    Ok(match (has_upper, has_lower) {
        (true, false) => Case::Upper,
        (false, true) => Case::Lower,
        (false, false) => Case::None,
        (true, true) => unreachable!(),
    })
}

/// Encode a bech32 payload to an [fmt::Write].
/// This method is intended for implementing traits from [std::fmt].
///
/// # Errors
/// * If [check_hrp] returns an error for the given HRP.
/// # Deviations from standard
/// * No length limits are enforced for the data part
pub fn encode_to_fmt<T: AsRef<[u5]>>(
    fmt: &mut fmt::Write,
    hrp: &str,
    data: T,
    variant: Variant,
) -> Result<fmt::Result, Error> {
    let hrp_lower = match check_hrp(&hrp)? {
        Case::Upper => Cow::Owned(hrp.to_lowercase()),
        Case::Lower | Case::None => Cow::Borrowed(hrp),
    };

    match Bech32Writer::new(&hrp_lower, variant, fmt) {
        Ok(mut writer) => {
            Ok(writer.write(data.as_ref()).and_then(|_| {
                // Finalize manually to avoid panic on drop if write fails
                writer.finalize()
            }))
        }
        Err(e) => Ok(Err(e)),
    }
}

/// Used for encode/decode operations for the two variants of Bech32
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
pub enum Variant {
    /// The original Bech32 described in [BIP-0173](https://github.com/bitcoin/bips/blob/master/bip-0173.mediawiki)
    Bech32,
    /// The improved Bech32m variant described in [BIP-0350](https://github.com/bitcoin/bips/blob/master/bip-0350.mediawiki)
    Bech32m,
}

const BECH32_CONST: u32 = 1;
const BECH32M_CONST: u32 = 0x2bc830a3;

impl Variant {
    // Produce the variant based on the remainder of the polymod operation
    fn from_remainder(c: u32) -> Option<Self> {
        match c {
            BECH32_CONST => Some(Variant::Bech32),
            BECH32M_CONST => Some(Variant::Bech32m),
            _ => None,
        }
    }

    fn constant(self) -> u32 {
        match self {
            Variant::Bech32 => BECH32_CONST,
            Variant::Bech32m => BECH32M_CONST,
        }
    }
}

/// Encode a bech32 payload to string.
///
/// # Errors
/// * If [check_hrp] returns an error for the given HRP.
/// # Deviations from standard
/// * No length limits are enforced for the data part
pub fn encode<T: AsRef<[u5]>>(hrp: &str, data: T, variant: Variant) -> Result<String, Error> {
    let mut buf = String::new();
    encode_to_fmt(&mut buf, hrp, data, variant)?.unwrap();
    Ok(buf)
}

/// Decode a bech32 string into the raw HRP and the data bytes.
///
/// Returns the HRP in lowercase..
pub fn decode(s: &str) -> Result<(String, Vec<u5>, Variant), Error> {
    // Ensure overall length is within bounds
    if s.len() < 8 {
        return Err(Error::InvalidLength);
    }

    // Split at separator and check for two pieces
    let (raw_hrp, raw_data) = match s.rfind(SEP) {
        None => return Err(Error::MissingSeparator),
        Some(sep) => {
            let (hrp, data) = s.split_at(sep);
            (hrp, &data[1..])
        }
    };
    if raw_data.len() < 6 {
        return Err(Error::InvalidLength);
    }

    let mut case = check_hrp(&raw_hrp)?;
    let hrp_lower = match case {
        Case::Upper => raw_hrp.to_lowercase(),
        // already lowercase
        Case::Lower | Case::None => String::from(raw_hrp),
    };

    // Check data payload
    let mut data = raw_data
        .chars()
        .map(|c| {
            // Only check if c is in the ASCII range, all invalid ASCII
            // characters have the value -1 in CHARSET_REV (which covers
            // the whole ASCII range) and will be filtered out later.
            if !c.is_ascii() {
                return Err(Error::InvalidChar(c));
            }

            if c.is_lowercase() {
                match case {
                    Case::Upper => return Err(Error::MixedCase),
                    Case::None => case = Case::Lower,
                    Case::Lower => {}
                }
            } else if c.is_uppercase() {
                match case {
                    Case::Lower => return Err(Error::MixedCase),
                    Case::None => case = Case::Upper,
                    Case::Upper => {}
                }
            }

            // c should be <128 since it is in the ASCII range, CHARSET_REV.len() == 128
            let num_value = CHARSET_REV[c as usize];

            if num_value > 31 || num_value < 0 {
                return Err(Error::InvalidChar(c));
            }

            Ok(u5::try_from_u8(num_value as u8).expect("range checked above, num_value <= 31"))
        })
        .collect::<Result<Vec<u5>, Error>>()?;

    // Ensure checksum
    match verify_checksum(&hrp_lower.as_bytes(), &data) {
        Some(variant) => {
            // Remove checksum from data payload
            let dbl: usize = data.len();
            data.truncate(dbl - 6);

            Ok((hrp_lower, data, variant))
        }
        None => Err(Error::InvalidChecksum),
    }
}

fn verify_checksum(hrp: &[u8], data: &[u5]) -> Option<Variant> {
    let mut exp = hrp_expand(hrp);
    exp.extend_from_slice(data);
    Variant::from_remainder(polymod(&exp))
}

fn hrp_expand(hrp: &[u8]) -> Vec<u5> {
    let mut v: Vec<u5> = Vec::new();
    for b in hrp {
        v.push(u5::try_from_u8(*b >> 5).expect("can't be out of range, max. 7"));
    }
    v.push(u5::try_from_u8(0).unwrap());
    for b in hrp {
        v.push(u5::try_from_u8(*b & 0x1f).expect("can't be out of range, max. 31"));
    }
    v
}

fn polymod(values: &[u5]) -> u32 {
    let mut chk: u32 = 1;
    let mut b: u8;
    for v in values {
        b = (chk >> 25) as u8;
        chk = (chk & 0x01ff_ffff) << 5 ^ (u32::from(*v.as_ref()));

        for (i, item) in GEN.iter().enumerate() {
            if (b >> i) & 1 == 1 {
                chk ^= item;
            }
        }
    }
    chk
}

/// Human-readable part and data part separator
const SEP: char = '1';

/// Encoding character set. Maps data value -> char
const CHARSET: [char; 32] = [
    'q', 'p', 'z', 'r', 'y', '9', 'x', '8', //  +0
    'g', 'f', '2', 't', 'v', 'd', 'w', '0', //  +8
    's', '3', 'j', 'n', '5', '4', 'k', 'h', // +16
    'c', 'e', '6', 'm', 'u', 'a', '7', 'l', // +24
];

/// Reverse character set. Maps ASCII byte -> CHARSET index on [0,31]
const CHARSET_REV: [i8; 128] = [
    -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
    -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
    15, -1, 10, 17, 21, 20, 26, 30, 7, 5, -1, -1, -1, -1, -1, -1, -1, 29, -1, 24, 13, 25, 9, 8, 23,
    -1, 18, 22, 31, 27, 19, -1, 1, 0, 3, 16, 11, 28, 12, 14, 6, 4, 2, -1, -1, -1, -1, -1, -1, 29,
    -1, 24, 13, 25, 9, 8, 23, -1, 18, 22, 31, 27, 19, -1, 1, 0, 3, 16, 11, 28, 12, 14, 6, 4, 2, -1,
    -1, -1, -1, -1,
];

/// Generator coefficients
const GEN: [u32; 5] = [
    0x3b6a_57b2,
    0x2650_8e6d,
    0x1ea1_19fa,
    0x3d42_33dd,
    0x2a14_62b3,
];

/// Error types for Bech32 encoding / decoding
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
pub enum Error {
    /// String does not contain the separator character
    MissingSeparator,
    /// The checksum does not match the rest of the data
    InvalidChecksum,
    /// The data or human-readable part is too long or too short
    InvalidLength,
    /// Some part of the string contains an invalid character
    InvalidChar(char),
    /// Some part of the data has an invalid value
    InvalidData(u8),
    /// The bit conversion failed due to a padding issue
    InvalidPadding,
    /// The whole string must be of one case
    MixedCase,
}

impl fmt::Display for Error {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match *self {
            Error::MissingSeparator => write!(f, "missing human-readable separator, \"{}\"", SEP),
            Error::InvalidChecksum => write!(f, "invalid checksum"),
            Error::InvalidLength => write!(f, "invalid length"),
            Error::InvalidChar(n) => write!(f, "invalid character (code={})", n),
            Error::InvalidData(n) => write!(f, "invalid data point ({})", n),
            Error::InvalidPadding => write!(f, "invalid padding"),
            Error::MixedCase => write!(f, "mixed-case strings not allowed"),
        }
    }
}

#[cfg(any(feature = "std", test))]
impl std::error::Error for Error {
    fn description(&self) -> &str {
        match *self {
            Error::MissingSeparator => "missing human-readable separator",
            Error::InvalidChecksum => "invalid checksum",
            Error::InvalidLength => "invalid length",
            Error::InvalidChar(_) => "invalid character",
            Error::InvalidData(_) => "invalid data point",
            Error::InvalidPadding => "invalid padding",
            Error::MixedCase => "mixed-case strings not allowed",
        }
    }
}

/// Convert between bit sizes
///
/// # Errors
/// * `Error::InvalidData` if any element of `data` is out of range
/// * `Error::InvalidPadding` if `pad == false` and the padding bits are not `0`
///
/// # Panics
/// Function will panic if attempting to convert `from` or `to` a bit size that
/// is 0 or larger than 8 bits.
///
/// # Examples
///
/// ```rust
/// use bech32::convert_bits;
/// let base5 = convert_bits(&[0xff], 8, 5, true);
/// assert_eq!(base5.unwrap(), vec![0x1f, 0x1c]);
/// ```
pub fn convert_bits<T>(data: &[T], from: u32, to: u32, pad: bool) -> Result<Vec<u8>, Error>
where
    T: Into<u8> + Copy,
{
    if from > 8 || to > 8 || from == 0 || to == 0 {
        panic!("convert_bits `from` and `to` parameters 0 or greater than 8");
    }
    let mut acc: u32 = 0;
    let mut bits: u32 = 0;
    let mut ret: Vec<u8> = Vec::new();
    let maxv: u32 = (1 << to) - 1;
    for value in data {
        let v: u32 = u32::from(Into::<u8>::into(*value));
        if (v >> from) != 0 {
            // Input value exceeds `from` bit size
            return Err(Error::InvalidData(v as u8));
        }
        acc = (acc << from) | v;
        bits += from;
        while bits >= to {
            bits -= to;
            ret.push(((acc >> bits) & maxv) as u8);
        }
    }
    if pad {
        if bits > 0 {
            ret.push(((acc << (to - bits)) & maxv) as u8);
        }
    } else if bits >= from || ((acc << (to - bits)) & maxv) != 0 {
        return Err(Error::InvalidPadding);
    }
    Ok(ret)
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn getters() {
        let decoded = decode("BC1SW50QA3JX3S").unwrap();
        let data = [16, 14, 20, 15, 0].check_base32().unwrap();
        assert_eq!(&decoded.0, "bc");
        assert_eq!(decoded.1, data.as_slice());
    }

    #[test]
    fn valid_checksum() {
        let strings: Vec<&str> = vec!(
            // Bech32
            "A12UEL5L",
            "an83characterlonghumanreadablepartthatcontainsthenumber1andtheexcludedcharactersbio1tt5tgs",
            "abcdef1qpzry9x8gf2tvdw0s3jn54khce6mua7lmqqqxw",
            "11qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqc8247j",
            "split1checkupstagehandshakeupstreamerranterredcaperred2y9e3w",
            // Bech32m
            "A1LQFN3A",
            "a1lqfn3a",
            "an83characterlonghumanreadablepartthatcontainsthetheexcludedcharactersbioandnumber11sg7hg6",
            "abcdef1l7aum6echk45nj3s0wdvt2fg8x9yrzpqzd3ryx",
            "11llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllludsr8",
            "split1checkupstagehandshakeupstreamerranterredcaperredlc445v",
            "?1v759aa",
        );
        for s in strings {
            match decode(s) {
                Ok((hrp, payload, variant)) => {
                    let encoded = encode(&hrp, payload, variant).unwrap();
                    assert_eq!(s.to_lowercase(), encoded.to_lowercase());
                }
                Err(e) => panic!("Did not decode: {:?} Reason: {:?}", s, e),
            }
        }
    }

    #[test]
    fn invalid_strings() {
        let pairs: Vec<(&str, Error)> = vec!(
            (" 1nwldj5",
                Error::InvalidChar(' ')),
            ("abc1\u{2192}axkwrx",
                Error::InvalidChar('\u{2192}')),
            ("an84characterslonghumanreadablepartthatcontainsthenumber1andtheexcludedcharactersbio1569pvx",
                Error::InvalidLength),
            ("pzry9x0s0muk",
                Error::MissingSeparator),
            ("1pzry9x0s0muk",
                Error::InvalidLength),
            ("x1b4n0q5v",
                Error::InvalidChar('b')),
            ("ABC1DEFGOH",
                Error::InvalidChar('O')),
            ("li1dgmt3",
                Error::InvalidLength),
            ("de1lg7wt\u{ff}",
                Error::InvalidChar('\u{ff}')),
            ("\u{20}1xj0phk",
                Error::InvalidChar('\u{20}')),
            ("\u{7F}1g6xzxy",
                Error::InvalidChar('\u{7F}')),
            ("an84characterslonghumanreadablepartthatcontainsthetheexcludedcharactersbioandnumber11d6pts4",
                Error::InvalidLength),
            ("qyrz8wqd2c9m",
                Error::MissingSeparator),
            ("1qyrz8wqd2c9m",
                Error::InvalidLength),
            ("y1b0jsk6g",
                Error::InvalidChar('b')),
            ("lt1igcx5c0",
                Error::InvalidChar('i')),
            ("in1muywd",
                Error::InvalidLength),
            ("mm1crxm3i",
                Error::InvalidChar('i')),
            ("au1s5cgom",
                Error::InvalidChar('o')),
            ("M1VUXWEZ",
                Error::InvalidChecksum),
            ("16plkw9",
                Error::InvalidLength),
            ("1p2gdwpf",
                Error::InvalidLength),
        );
        for p in pairs {
            let (s, expected_error) = p;
            match decode(s) {
                Ok(_) => panic!("Should be invalid: {:?}", s),
                Err(e) => assert_eq!(e, expected_error, "testing input '{}'", s),
            }
        }
    }

    #[test]
    fn valid_conversion() {
        // Set of [data, from_bits, to_bits, pad, result]
        let tests: Vec<(Vec<u8>, u32, u32, bool, Vec<u8>)> = vec![
            (vec![0x01], 1, 1, true, vec![0x01]),
            (vec![0x01, 0x01], 1, 1, true, vec![0x01, 0x01]),
            (vec![0x01], 8, 8, true, vec![0x01]),
            (vec![0x01], 8, 4, true, vec![0x00, 0x01]),
            (vec![0x01], 8, 2, true, vec![0x00, 0x00, 0x00, 0x01]),
            (
                vec![0x01],
                8,
                1,
                true,
                vec![0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01],
            ),
            (vec![0xff], 8, 5, true, vec![0x1f, 0x1c]),
            (vec![0x1f, 0x1c], 5, 8, false, vec![0xff]),
        ];
        for t in tests {
            let (data, from_bits, to_bits, pad, expected_result) = t;
            let result = convert_bits(&data, from_bits, to_bits, pad);
            assert!(result.is_ok());
            assert_eq!(result.unwrap(), expected_result);
        }
    }

    #[test]
    fn invalid_conversion() {
        // Set of [data, from_bits, to_bits, pad, expected error]
        let tests: Vec<(Vec<u8>, u32, u32, bool, Error)> = vec![
            (vec![0xff], 8, 5, false, Error::InvalidPadding),
            (vec![0x02], 1, 1, true, Error::InvalidData(0x02)),
        ];
        for t in tests {
            let (data, from_bits, to_bits, pad, expected_error) = t;
            let result = convert_bits(&data, from_bits, to_bits, pad);
            assert!(result.is_err());
            assert_eq!(result.unwrap_err(), expected_error);
        }
    }

    #[test]
    fn convert_bits_invalid_bit_size() {
        use std::panic::{catch_unwind, set_hook, take_hook};

        let invalid = &[(0, 8), (5, 0), (9, 5), (8, 10), (0, 16)];

        for &(from, to) in invalid {
            set_hook(Box::new(|_| {}));
            let result = catch_unwind(|| {
                let _ = convert_bits(&[0], from, to, true);
            });
            let _ = take_hook();
            assert!(result.is_err());
        }
    }

    #[test]
    fn check_base32() {
        assert!([0u8, 1, 2, 30, 31].check_base32().is_ok());
        assert!([0u8, 1, 2, 30, 31, 32].check_base32().is_err());
        assert!([0u8, 1, 2, 30, 31, 255].check_base32().is_err());

        assert!([1u8, 2, 3, 4].check_base32().is_ok());
        assert_eq!(
            [30u8, 31, 35, 20].check_base32(),
            Err(Error::InvalidData(35))
        );
    }

    #[test]
    fn test_encode() {
        assert_eq!(
            encode(
                "",
                vec![1u8, 2, 3, 4].check_base32().unwrap(),
                Variant::Bech32
            ),
            Err(Error::InvalidLength)
        );
    }

    #[test]
    fn from_base32() {
        use FromBase32;
        assert_eq!(
            Vec::from_base32(&[0x1f, 0x1c].check_base32().unwrap()),
            Ok(vec![0xff])
        );
        assert_eq!(
            Vec::from_base32(&[0x1f, 0x1f].check_base32().unwrap()),
            Err(Error::InvalidPadding)
        );
    }

    #[test]
    fn to_base32() {
        use ToBase32;
        assert_eq!([0xffu8].to_base32(), [0x1f, 0x1c].check_base32().unwrap());
    }

    #[test]
    fn reverse_charset() {
        use CHARSET_REV;

        fn get_char_value(c: char) -> i8 {
            let charset = "qpzry9x8gf2tvdw0s3jn54khce6mua7l";
            match charset.find(c.to_ascii_lowercase()) {
                Some(x) => x as i8,
                None => -1,
            }
        }

        let expected_rev_charset = (0u8..128)
            .map(|i| get_char_value(i as char))
            .collect::<Vec<_>>();

        assert_eq!(&(CHARSET_REV[..]), expected_rev_charset.as_slice());
    }

    #[test]
    fn writer() {
        let hrp = "lnbc";
        let data = "Hello World!".as_bytes().to_base32();

        let mut written_str = String::new();
        {
            let mut writer = Bech32Writer::new(hrp, Variant::Bech32, &mut written_str).unwrap();
            writer.write(&data).unwrap();
            writer.finalize().unwrap();
        }

        let encoded_str = encode(hrp, data, Variant::Bech32).unwrap();

        assert_eq!(encoded_str, written_str);
    }

    #[test]
    fn write_on_drop() {
        let hrp = "lntb";
        let data = "Hello World!".as_bytes().to_base32();

        let mut written_str = String::new();
        {
            let mut writer = Bech32Writer::new(hrp, Variant::Bech32, &mut written_str).unwrap();
            writer.write(&data).unwrap();
        }

        let encoded_str = encode(hrp, data, Variant::Bech32).unwrap();

        assert_eq!(encoded_str, written_str);
    }

    #[test]
    fn test_hrp_case() {
        // Tests for issue with HRP case checking being ignored for encoding
        use ToBase32;
        let encoded_str = encode("HRP", [0x00, 0x00].to_base32(), Variant::Bech32).unwrap();

        assert_eq!(encoded_str, "hrp1qqqq40atq3");
    }
}