1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
use crate::{error::WasmEdgeError, WasmEdgeResult};
use wasmedge_sys as sys;
use wasmedge_types::MemoryType;
/// Defines a linear memory.
#[derive(Debug, Clone)]
pub struct Memory {
pub(crate) inner: sys::Memory,
pub(crate) name: Option<String>,
pub(crate) mod_name: Option<String>,
pub(crate) ty: MemoryType,
}
impl Memory {
/// Creates a new wasm memory instance with the given type.
///
/// # Argument
///
/// * `ty` - The type of the memory instance to be created.
///
/// # Error
///
/// * If fail to create the memory instance, then [WasmEdgeError::Mem(MemError::Create)](crate::error::MemError) is returned.
pub fn new(ty: MemoryType) -> WasmEdgeResult<Self> {
let inner = sys::Memory::create(&ty.clone().into())?;
Ok(Self {
inner,
name: None,
mod_name: None,
ty,
})
}
/// Returns the exported name of this memory.
///
/// Notice that this field is meaningful only if this memory is used as an exported instance.
pub fn name(&self) -> Option<&str> {
match &self.name {
Some(name) => Some(name.as_ref()),
None => None,
}
}
/// Returns the name of the [module instance](crate::Instance) from which this memory exports.
///
/// Notice that this field is meaningful only if this memory is used as an exported instance.
pub fn mod_name(&self) -> Option<&str> {
match &self.mod_name {
Some(mod_name) => Some(mod_name.as_ref()),
None => None,
}
}
/// Returns a reference to the type of this memory.
pub fn ty(&self) -> &MemoryType {
&self.ty
}
/// Returns the size, in WebAssembly pages (64 KiB of each page), of this wasm memory.
pub fn page(&self) -> u32 {
self.inner.size()
}
/// Returns the byte length of this memory. The returned value will be a multiple of the wasm page size, 64k.
pub fn size(&self) -> u64 {
self.page() as u64 * 65536_u64
}
/// Safely reads memory contents at the given offset into a buffer.
///
/// # Arguments
///
/// * `offset` - The offset from which to read.
///
/// * `len` - the length of bytes to read.
///
/// # Error
///
/// If fail to read the memory, then an error is returned.
pub fn read(&self, offset: u32, len: u32) -> WasmEdgeResult<Vec<u8>> {
let data = self.inner.get_data(offset, len)?;
Ok(data)
}
/// Returns a string of byte length `len` from this memory, starting at `offset`.
///
/// # Arguments
///
/// * `offset` - The offset from which to read.
///
/// * `len` - the length of bytes to read.
///
/// # Error
///
/// If fail to read, then an error is returned.
pub fn read_string(&self, offset: u32, len: u32) -> WasmEdgeResult<String> {
let slice = self.read(offset, len)?;
Ok(std::str::from_utf8(&slice)
.map_err(WasmEdgeError::Utf8)?
.to_string())
}
/// Safely writes contents of a buffer to this memory at the given offset.
///
/// # Arguments
///
/// * `data` - The bytes to write to this memory..
///
/// * `offset` - The offset at which to write.
///
/// # Error
///
/// If fail to write to the memory, then an error is returned.
pub fn write(&mut self, data: impl AsRef<[u8]>, offset: u32) -> WasmEdgeResult<()> {
self.inner.set_data(data, offset)?;
Ok(())
}
/// Grows this memory by the `count` pages.
///
/// # Argument
///
/// * `count` - The number of pages to grow the memory by.
///
/// # Error
///
/// If fail to grow the memory, then an error is returned.
pub fn grow(&mut self, count: u32) -> WasmEdgeResult<()> {
self.inner.grow(count)?;
Ok(())
}
/// Returns the const data pointer to this memory.
///
/// # Arguments
///
/// * `offset` - The data start offset in this memory.
///
/// * `len` - The requested data length. If the size of `offset` + `len` is larger
/// than the data size in this memory.
///
///
/// # Errors
///
/// If fail to get the data pointer, then an error is returned.
///
pub fn data_pointer(&self, offset: u32, len: u32) -> WasmEdgeResult<*const u8> {
self.inner.data_pointer(offset, len)
}
/// Returns the data pointer to this memory.
///
/// # Arguments
///
/// * `offset` - The data start offset in this memory.
///
/// * `len` - The requested data length. If the size of `offset` + `len` is larger than the data size in this memory.
///
/// # Errors
///
/// If fail to get the data pointer, then an error is returned.
///
pub fn data_pointer_mut(&mut self, offset: u32, len: u32) -> WasmEdgeResult<*mut u8> {
self.inner.data_pointer_mut(offset, len)
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::{
config::{CommonConfigOptions, ConfigBuilder},
Executor, ImportObjectBuilder, NeverType, Statistics, Store,
};
#[test]
#[allow(clippy::assertions_on_result_states)]
fn test_memory_type() {
let result = MemoryType::new(0, None, false);
assert!(result.is_ok());
let ty = result.unwrap();
assert_eq!(ty.minimum(), 0);
assert_eq!(ty.maximum(), None);
let result = MemoryType::new(10, Some(20), false);
assert!(result.is_ok());
let ty = result.unwrap();
assert_eq!(ty.minimum(), 10);
assert_eq!(ty.maximum(), Some(20));
}
#[test]
#[allow(clippy::assertions_on_result_states)]
fn test_memory() {
// create a memory instance
let result = MemoryType::new(10, Some(20), false);
assert!(result.is_ok());
let memory_type = result.unwrap();
let result = Memory::new(memory_type);
assert!(result.is_ok());
let memory = result.unwrap();
// create an import object
let result = ImportObjectBuilder::new()
.with_memory("memory", memory)
.build::<NeverType>("extern", None);
assert!(result.is_ok());
let import = result.unwrap();
// create an executor
let result = ConfigBuilder::new(CommonConfigOptions::default()).build();
assert!(result.is_ok());
let config = result.unwrap();
let result = Statistics::new();
assert!(result.is_ok());
let mut stat = result.unwrap();
let result = Executor::new(Some(&config), Some(&mut stat));
assert!(result.is_ok());
let mut executor = result.unwrap();
// create a store
let result = Store::new();
assert!(result.is_ok());
let mut store = result.unwrap();
let result = store.named_instance("extern");
assert!(result.is_err());
let result = store.register_import_module(&mut executor, &import);
assert!(result.is_ok());
let result = store.named_instance("extern");
assert!(result.is_ok());
let instance = result.unwrap();
// get the exported memory
let result = instance.memory("memory");
assert!(result.is_ok());
let mut memory = result.unwrap();
// check memory
assert!(memory.name().is_some());
assert_eq!(memory.name().unwrap(), "memory");
assert_eq!(memory.mod_name(), Some("extern"));
assert_eq!(memory.page(), 10);
// check memory type
let ty = memory.ty();
assert_eq!(ty.minimum(), 10);
assert_eq!(ty.maximum(), Some(20));
// read data before write data
let result = memory.read(0, 10);
assert!(result.is_ok());
let data = result.unwrap();
assert_eq!(data, vec![0; 10]);
// write data
// ! debug
let data = vec![1; 10];
let result = memory.write(data.as_slice(), 10);
// let result = memory.write(vec![1; 10], 10);
assert!(result.is_ok());
// read data after write data
let result = memory.read(10, 10);
assert!(result.is_ok());
let data = result.unwrap();
assert_eq!(data, vec![1; 10]);
// grow memory
let result = memory.grow(5);
assert!(result.is_ok());
assert_eq!(memory.page(), 15);
// get memory from instance again
let result = instance.memory("memory");
assert!(result.is_ok());
let memory = result.unwrap();
assert_eq!(memory.page(), 15);
}
#[test]
fn test_memory_read() {
let result = MemoryType::new(10, Some(20), false);
assert!(result.is_ok());
let memory_type = result.unwrap();
let result = Memory::new(memory_type);
assert!(result.is_ok());
let mut memory = result.unwrap();
let result = memory.read(0, 10);
assert!(result.is_ok());
let data = result.unwrap();
assert_eq!(data, vec![0; 10]);
let s = String::from("hello");
let bytes = s.as_bytes();
let len = bytes.len();
let result = memory.write(bytes, 0);
assert!(result.is_ok());
let result = memory.read(0, len as u32);
assert!(result.is_ok());
let data = result.unwrap();
assert_eq!(data, bytes);
let result = memory.read_string(0, len as u32);
assert!(result.is_ok());
let data = result.unwrap();
assert_eq!(data, s);
}
#[test]
fn test_memory_clone() {
#[derive(Debug, Clone)]
struct RecordsMemory {
memory: Memory,
}
// create a memory instance
let result = MemoryType::new(10, Some(20), false);
assert!(result.is_ok());
let memory_type = result.unwrap();
let result = Memory::new(memory_type);
assert!(result.is_ok());
let memory = result.unwrap();
// create a RecordsMemory instance
let rec_mem = RecordsMemory { memory };
// clone the RecordsMemory instance
let rec_mem_cloned = rec_mem.clone();
// drop the original RecordsMemory instance
drop(rec_mem);
// check the cloned RecordsMemory instance
assert_eq!(rec_mem_cloned.memory.page(), 10);
}
}